Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.22.21266512

ABSTRACT

Importance: The long-term effects of COVID-19 on the incidence of vascular diseases are unclear. Objective: To quantify the association between time since diagnosis of COVID-19 and vascular disease, overall and by age, sex, ethnicity, and pre-existing disease. Design: Cohort study based on population-wide linked electronic health records, with follow up from January 1st to December 7th 2020. Setting and participants: Adults registered with an NHS general practice in England or Wales and alive on January 1st 2020. Exposures: Time since diagnosis of COVID-19 (categorised as 0-6 days, 1-2 weeks, 3-4, 5-8, 9-12, 13-26 and 27-49 weeks since diagnosis), with and without hospitalisation within 28 days of diagnosis. Main outcomes and measures: Primary outcomes were arterial thromboses (mainly acute myocardial infarction and ischaemic stroke) and venous thromboembolic events (VTE, mainly pulmonary embolism and lower limb deep vein thrombosis). We also studied other vascular events (transient ischaemic attack, haemorrhagic stroke, heart failure and angina). Hazard ratios were adjusted for demographic characteristics, previous disease diagnoses, comorbidities and medications. Results: Among 48 million adults, 130,930 were and 1,315,471 were not hospitalised within 28 days of COVID-19. In England, there were 259,742 first arterial thromboses and 60,066 first VTE during 41.6 million person-years follow-up. Adjusted hazard ratios (aHRs) for first arterial thrombosis compared with no COVID-19 declined rapidly from 21.7 (95% CI 21.0-22.4) to 3.87 (3.58-4.19) in weeks 1 and 2 after COVID-19, 2.80 (2.61-3.01) during weeks 3-4 then to 1.34 (1.21-1.48) during weeks 27-49. aHRs for first VTE declined from 33.2 (31.3-35.2) and 8.52 (7.59-9.58) in weeks 1 and 2 to 7.95 (7.28-8.68) and 4.26 (3.86-4.69) during weeks 3-4 and 5-8, then 2.20 (1.99-2.44) and 1.80 (1.50-2.17) during weeks 13-26 and 27-49 respectively. aHRs were higher, for longer after diagnosis, after hospitalised than non-hospitalised COVID-19. aHRs were also higher among people of Black and Asian than White ethnicity and among people without than with a previous event. Across the whole population estimated increases in risk of arterial thromboses and VTEs were 2.5% and 0.6% respectively 49 weeks after COVID-19, corresponding to 7,197 and 3,517 additional events respectively after 1.4 million COVID-19 diagnoses. Conclusions and Relevance: High rates of vascular disease early after COVID-19 diagnosis decline more rapidly for arterial thromboses than VTEs but rates remain elevated up to 49 weeks after COVID-19. These results support continued policies to avoid COVID-19 infection with effective COVID-19 vaccines and use of secondary preventive agents in high-risk patients.


Subject(s)
Pulmonary Embolism , Myocardial Infarction , Ischemic Attack, Transient , Heart Failure , Venous Thromboembolism , Angina Pectoris , Vascular Diseases , Cerebral Infarction , Thrombosis , COVID-19 , Stroke , Venous Thrombosis
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.18.21262222

ABSTRACT

BackgroundThromboses in unusual locations after the COVID-19 vaccine ChAdOx1-S have been reported. Better understanding of population-level thrombotic risks after COVID-19 vaccination is needed. MethodsWe analysed linked electronic health records from adults living in England, from 8th December 2020 to 18th March 2021. We estimated incidence rates and hazard ratios (HRs) for major arterial, venous and thrombocytopenic outcomes 1-28 and >28 days after first vaccination dose for ChAdOx1-S and BNT162b2 vaccines. Analyses were performed separately for ages <70 and [≥]70 years, and adjusted for age, sex, comorbidities, and social and demographic factors. ResultsOf 46,162,942 adults, 21,193,814 (46%) had their first vaccination during follow-up. Adjusted HRs 1-28 days after ChAdOx1-S, compared with unvaccinated rates, at ages <70 and [≥]70 respectively, were 0.97 (95% CI: 0.90-1.05) and 0.58 (0.53-0.63) for venous thromboses, and 0.90 (0.86-0.95) and 0.76 (0.73-0.79) for arterial thromboses. Corresponding HRs for BNT162b2 were 0.81 (0.74-0.88) and 0.57 (0.53-0.62) for venous thromboses, and 0.94 (0.90-0.99) and 0.72 (0.70-0.75) for arterial thromboses. HRs for thrombotic events were higher at younger ages for venous thromboses after ChAdOx1-S, and for arterial thromboses after both vaccines. Rates of intracranial venous thrombosis (ICVT) and thrombocytopenia in adults aged <70 years were higher 1-28 days after ChAdOx1-S (adjusted HRs 2.27, 95% CI:1.33- 3.88 and 1.71, 1.35-2.16 respectively), but not after BNT162b2 (0.59, 0.24-1.45 and 1.00, 0.75-1.34) compared with unvaccinated. The corresponding absolute excess risks of ICVT 1-28 days after ChAdOx1-S were 0.9-3 per million, varying by age and sex. ConclusionsIncreases in ICVT and thrombocytopenia after ChAdOx1-S vaccination in adults aged <70 years were small compared with its effect in reducing COVID-19 morbidity and mortality, although more precise estimates for adults <40 years are needed. For people aged [≥]70 years, rates of arterial or venous thrombotic, events were generally lower after either vaccine.


Subject(s)
Venous Thromboembolism , Thrombocytopenia , Venous Thrombosis , Thrombosis , COVID-19 , Intracranial Thrombosis
SELECTION OF CITATIONS
SEARCH DETAIL